New Research Featuring DIC from Correlated Solutions
Over the past few months, there has been a flurry of publications featuring the industry-leading VIC-3D and VIC-2D systems across many disciplines. The open-access studies below present current research into high-tech concrete, ballistics, and UAS bridge inspections, and they all use powerful digital image correlation systems developed by Correlated Solutions.
Comparative Analysis of Object Digitization Techniques Applied to the Characterization of Deformed Materials in Ballistic Tests
Abstract: Bridge inspections are an important procedure for maintaining the infrastructure vital to our economy and well-being. The current methodology of utilizing specialized equipment such as snooper trucks and scaffolding to support manned-inspections poses a significant financial cost, disrupts traffic, and is dangerous to the inspectors and public. The advent of unmanned aerial systems (UAS), more commonly called drones, presents a practical solution that promises reduced cost, enhanced safety, and is significantly less intrusive than previous methodologies. Current limitations in the implementation of UAS include the reliance on a skilled operator and/or the requirement for a UAS to operate in a cluttered, GPS-denied environment. A solution to these challenges is presented in this paper by utilizing commercial off-the-shelf (COTS) hardware including laser rangefinders, optical flow sensors, and live video telemetry. Included in the system is the obstacle avoidance equipped drone and a ground station intended to be manned by a pilot and bridge inspector. The proposed custom-fabricated UAS was implemented during eight inspections of Florida Department of Transportation (FDOT) bridges. The UAS was able to navigate under GPS-denied and obstacle-laden bridge decks with position-hold performance comparable to, if not better than, a COTS unit in an unobstructed environment. The position hold capability maintained an altitude of ±12.8 cm with a horizontal hold of ±435 cm. Details of the hardware, algorithm development, and suggestions for future research are discussed in this paper.
Whitley, T.; Tomiczek, A.; Tripp, C.; Ortega, A.; Mennu, M.; Bridge, J.; Ifju, P. Design of a Small Unmanned Aircraft System for Bridge Inspections. Sensors 2020, 20, 5358.