Analysis of Geometric Accuracy and Thickness Reduction in Multistage Incremental Sheet Forming using DIC

M. M. Gonzalez et al., "Analysis of Geometric Accuracy and Thickness Reduction in Multistage Incremental Sheet Forming using Digital Image Correlation," Procedia Manufacturing, vol. 34, pp. 950-960, Elsevier B.V., Jun 2019.

Abstract:

Incremental Sheet Forming (ISF) is a freeform manufacturing method whereby a 3D geometry is created by progressively deforming a metal sheet with a single point tool following a defined trajectory. The thickness distribution of a formed part is a major consideration of the process and is believed to be improved by forming the geometry in multiple stages. This paper describes a series of experiments in which truncated cone geometries were formed using two multistage methods and compared to the same geometry formed using the traditional single stage method. The geometric accuracy and thickness distributions, including 3D thickness distribution plots, of each are examined using digital image correlation (DIC). The data collected indicate that multistage forming, compared to single stage forming, has a significant effect on the geometric accuracy of the processed sheets. Moreover, the results of the experiments conducted in this paper show that sheets processed with multistage forming do not have a uniform sheet thickness reduction, rather they have a parabolic-like thickness distribution in the processed region.

Previous
Previous

Mechanical Behavior and Failure Mechanisms of Li-ion Battery Separators

Next
Next

DIC for Rail Neutral Temperature & Stress Measurements